Area of Triangle Formula: Complete Guide with All Types & Examples

Complete Guide to Triangle Area Formulas

The area of a triangle represents the amount of space enclosed within its three sides. Understanding different formulas for calculating triangle area is essential for geometry, trigonometry, and practical applications in engineering, architecture, and physics.

Comprehensive Triangle Area Formulas

Formula Type Formula When to Use Variables Explanation Example
Basic Area Formula A = ½ × base × height When base and perpendicular height are known base = any side length
height = perpendicular distance to base
Base = 8 cm, Height = 6 cm
Area = ½ × 8 × 6 = 24 cm²
Heron’s Formula A = √[s(s-a)(s-b)(s-c)] When all three sides are known a, b, c = side lengths
s = semi-perimeter = (a+b+c)/2
Sides: 3, 4, 5 cm
s = (3+4+5)/2 = 6
Area = √[6(6-3)(6-4)(6-5)] = 6 cm²
Right Triangle Formula A = ½ × leg₁ × leg₂ When two perpendicular sides are known leg₁, leg₂ = perpendicular sides (not hypotenuse) Legs: 3 cm, 4 cm
Area = ½ × 3 × 4 = 6 cm²
Equilateral Triangle Formula A = (√3/4) × side² When all sides are equal side = length of any side Side = 6 cm
Area = (√3/4) × 6² = 9√3 ≈ 15.59 cm²
Isosceles Triangle Formula A = (b/4) × √(4a² – b²) When two sides are equal a = equal sides length
b = base length
Equal sides = 5 cm, Base = 6 cm
Area = (6/4) × √(4×25 – 36) = 12 cm²
Using Two Sides and Included Angle A = ½ × a × b × sin(C) When two sides and included angle are known a, b = side lengths
C = angle between sides a and b
Sides: 4, 6 cm, Angle = 60°
Area = ½ × 4 × 6 × sin(60°) = 6√3 cm²
Using Coordinates **A = ½ x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂) ** When three vertices coordinates are known
Using Vector Cross Product **A = ½ u⃗ × v⃗ ** When two sides are represented as vectors
Using Circumradius A = (abc)/(4R) When all sides and circumradius are known a, b, c = side lengths
R = circumradius
Sides: 3, 4, 5 cm, R = 2.5 cm
Area = (3×4×5)/(4×2.5) = 6 cm²
Using Inradius A = r × s When inradius and semi-perimeter are known r = inradius
s = semi-perimeter
Inradius = 2 cm, Semi-perimeter = 6 cm
Area = 2 × 6 = 12 cm²
Using Median Length A = (4/3) × √[s_m(s_m-m_a)(s_m-m_b)(s_m-m_c)] When all three medians are known m_a, m_b, m_c = median lengths
s_m = (m_a+m_b+m_c)/2
Complex calculation – typically used in advanced problems

Special Triangle Formulas

Scalene Triangle (All sides different)

  • Primary Formula: Use Heron’s formula or coordinate method
  • Alternative: A = ½ × a × b × sin(C) when angle is known

Right-Angled Triangle

  • Hypotenuse Known: A = ½ × √[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]/2
  • Using Trigonometry: A = ½ × base × height = ½ × a × b (where a, b are legs)

Obtuse Triangle

  • Same formulas apply: Use Heron’s formula or sine formula
  • Note: One angle > 90°, but area calculations remain the same

Quick Reference for Common Triangles

Triangle Type Quick Formula Key Characteristics
3-4-5 Right Triangle A = 6 square units Classic Pythagorean triple
30-60-90 Triangle A = (side²√3)/4 Angles: 30°, 60°, 90°
45-45-90 Triangle A = side²/2 Isosceles right triangle
Equilateral Triangle A = (side²√3)/4 All angles = 60°, all sides equal

Tips for Students

Choosing the Right Formula

  1. Known Information: Base and height → Use basic formula
  2. Three sides known: → Use Heron’s formula
  3. Two sides and angle: → Use sine formula
  4. Right triangle: → Use ½ × leg₁ × leg₂
  5. Coordinates given: → Use coordinate formula

Common Mistakes to Avoid

  • Confusing base with hypotenuse in right triangles
  • Forgetting the ½ factor in basic area formula
  • Mixing up degrees and radians in trigonometric calculations
  • Using wrong sides in Heron’s formula calculation

Memory Aids

  • Basic Formula: “Half times base times height”
  • Right Triangle: “Half times leg times leg”
  • Heron’s Formula: “Square root of s times differences”
  • Sine Formula: “Half a-b-sine-C”

Practice Problems

Problem 1: Basic Formula

Find the area of a triangle with base 10 cm and height 8 cm.

Solution: A = ½ × 10 × 8 = 40 cm²

Problem 2: Heron’s Formula

Find the area of a triangle with sides 5 cm, 12 cm, and 13 cm.

Solution: s = (5+12+13)/2 = 15 A = √[15(15-5)(15-12)(15-13)] = √[15×10×3×2] = 30 cm²

Problem 3: Sine Formula

Find the area of a triangle with sides 6 cm and 8 cm, with an included angle of 45°.

Solution: A = ½ × 6 × 8 × sin(45°) = ½ × 6 × 8 × (√2/2) = 12√2 ≈ 16.97 cm²

Frequently Asked Questions (FAQs) on Triangle Formula

Q. What is the basic area of triangle formula?

The basic area of triangle formula is A = ½ × base × height, where the base is any side of the triangle and height is the perpendicular distance from the base to the opposite vertex. This is the most commonly used formula and works for all triangle types when the base and height are known.

Example: If base = 10 cm and height = 6 cm, then Area = ½ × 10 × 6 = 30 cm²

Q. How do you find the area of a triangle with 3 sides?

To find the area of a triangle when all three sides are known, use Heron’s formula: A = √[s(s-a)(s-b)(s-c)], where a, b, c are the three side lengths and s is the semi-perimeter calculated as s = (a+b+c)/2.

Step-by-step process:

  1. Add all three sides and divide by 2 to get semi-perimeter (s)
  2. Subtract each side from s to get (s-a), (s-b), and (s-c)
  3. Multiply s × (s-a) × (s-b) × (s-c)
  4. Take the square root of the result

Example: For sides 6 cm, 8 cm, and 10 cm:

  • s = (6+8+10)/2 = 12
  • Area = √[12(12-6)(12-8)(12-10)] = √[12×6×4×2] = 24 cm²

Q. What is the area of equilateral triangle formula?

The area of an equilateral triangle formula is A = (√3/4) × side² or A = 0.433 × side², where all three sides are equal in length. This formula is derived from the basic formula using the fact that the height of an equilateral triangle is (√3/2) × side.

Quick calculation: For an equilateral triangle with side 8 cm:

  • Area = (√3/4) × 8² = (√3/4) × 64 = 16√3 ≈ 27.71 cm²

Q. How do you calculate the area of a right angle triangle?

For a right-angled triangle, use the formula A = ½ × leg₁ × leg₂, where leg₁ and leg₂ are the two perpendicular sides (not the hypotenuse). The two legs automatically form the base and height, making this the simplest calculation.

Important: Do NOT use the hypotenuse in this formula—only the two sides that form the 90° angle.

Example: If the two legs measure 5 cm and 12 cm:

  • Area = ½ × 5 × 12 = 30 cm²

Q. What is the formula for area of isosceles triangle?

For an isosceles triangle (two equal sides), you can use either:

  • Standard formula: A = ½ × base × height
  • Special formula: A = (b/4) × √(4a² – b²), where a = length of equal sides and b = base
  • Alternative: A = ½ × a × b × sin(C), where C is the angle between the equal sides

Example: For equal sides of 5 cm and base of 6 cm:

  • Area = (6/4) × √(4×25 – 36) = 1.5 × √64 = 12 cm²

Q. Which triangle area formula should I use when?

Choose the formula based on what information you have:

Given Information Best Formula to Use
Base and height A = ½ × base × height
All 3 sides Heron’s formula: A = √[s(s-a)(s-b)(s-c)]
2 sides and included angle A = ½ × a × b × sin(C)
Right triangle (2 legs) A = ½ × leg₁ × leg₂
Equilateral triangle A = (√3/4) × side²
Coordinates of vertices A = ½|x₁(y₂-y₃) + x₂(y₃-y₁) + x₃(y₁-y₂)|

Pro tip: The basic formula (½ × base × height) is the most versatile. If you can find or calculate the height, this is often the quickest method.

Conclusion

Mastering these triangle area formulas provides a solid foundation for geometry and trigonometry. Each formula serves specific scenarios, and understanding when to apply each one is crucial for problem-solving success. Regular practice with different triangle types will build confidence and mathematical proficiency.

  • Use the basic formula (½ × base × height) whenever possible
  • Apply Heron’s formula when only side lengths are known
  • Remember specialized formulas for equilateral and right triangles
  • Choose formulas based on available information

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top