Complete Guide to a³ + b³ and a³ – b³ Formulas

The a³ + b³ and a³ – b³ formulas are fundamental algebraic identities used extensively in mathematics. These formulas help factorize cubic expressions and solve complex algebraic problems efficiently. This comprehensive guide covers all related formulas, their proofs, and applications.

Complete Table of a³ + b³ and a³ – b³ Formulas

Formula Name Algebraic Expression Factored Form Key Points
a³ + b³ Formula a³ + b³ (a + b)(a² – ab + b²) Sum of two cubes
a³ – b³ Formula a³ – b³ (a – b)(a² + ab + b²) Difference of two cubes
a³ + b³ + c³ – 3abc Formula a³ + b³ + c³ – 3abc (a + b + c)(a² + b² + c² – ab – bc – ca) Valid for all values
a³ + b³ + c³ Formula (when a+b+c=0) a³ + b³ + c³ 3abc Special case when a + b + c = 0
(a + b)³ Formula (a + b)³ a³ + b³ + 3ab(a + b) Cube of a sum
(a – b)³ Formula (a – b)³ a³ – b³ – 3ab(a – b) Cube of a difference

 

Book a Counseling Session

Detailed Formula Explanations

1. a³ + b³ Formula (Sum of Cubes)

Formula:

a³ + b³ = (a + b)(a² - ab + b²)

When to Use:

  • Factorizing expressions involving the sum of two cubic terms
  • Simplifying algebraic fractions
  • Solving cubic equations

Example:

8³ + 27 = 512 + 27 = 539
Using formula: (8 + 3)(8² - 8×3 + 3²) = (11)(64 - 24 + 9) = 11 × 49 = 539 ✓

2. a³ – b³ Formula (Difference of Cubes)

Formula:

a³ - b³ = (a - b)(a² + ab + b²)

When to Use:

  • Factorizing expressions involving the difference of two cubic terms
  • Simplifying complex algebraic expressions
  • Solving polynomial equations

Example:

64 - 27 = 37
Using formula: (4 - 3)(4² + 4×3 + 3²) = (1)(16 + 12 + 9) = 1 × 37 = 37 ✓

3. a³ + b³ + c³ – 3abc Formula

Formula:

a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

Special Case: When a + b + c = 0, then:

a³ + b³ + c³ = 3abc

Application:

  • Solving problems involving three variables
  • Competitive exam questions
  • Advanced algebraic simplifications

Example: If a = 2, b = 3, c = -5 (where a + b + c = 0):

2³ + 3³ + (-5)³ = 3(2)(3)(-5) = -90
8 + 27 - 125 = -90 ✓

4. (a + b)³ Formula

Formula:

(a + b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a + b)

Expanded Form:

(a + b)³ = a³ + b³ + 3ab(a + b)

5. (a – b)³ Formula

Formula:

(a - b)³ = a³ - 3a²b + 3ab² - b³ = a³ - b³ - 3ab(a - b)

Expanded Form:

(a - b)³ = a³ - b³ - 3ab(a - b)

Proof of a³ + b³ Formula

Method 1: Algebraic Verification

Starting with the factored form:

(a + b)(a² - ab + b²)

Expanding using distributive property:

= a(a² - ab + b²) + b(a² - ab + b²)
= a³ - a²b + ab² + ba² - ab² + b³
= a³ - a²b + ba² + ab² - ab² + b³
= a³ + b³

Hence proved: a³ + b³ = (a + b)(a² – ab + b²)

Proof of a³ – b³ Formula

Method 1: Algebraic Verification

Starting with the factored form:

(a - b)(a² + ab + b²)

Expanding using distributive property:

= a(a² + ab + b²) - b(a² + ab + b²)
= a³ + a²b + ab² - ba² - ab² - b³
= a³ + a²b - ba² + ab² - ab² - b³
= a³ - b³

Hence proved: a³ – b³ = (a – b)(a² + ab + b²)

Quick Reference Table: Differences Between a³ + b³ and a³ – b³

Aspect a³ + b³ a³ – b³
First factor (a + b) (a – b)
Second factor (a² – ab + b²) (a² + ab + b²)
Middle term sign Negative (-ab) Positive (+ab)
Type Sum of cubes Difference of cubes

Practice Problems

Problem 1: Factorize 27x³ + 64y³

Solution:

= (3x)³ + (4y)³
= (3x + 4y)[(3x)² - (3x)(4y) + (4y)²]
= (3x + 4y)(9x² - 12xy + 16y²)

Problem 2: Factorize 125a³ – 8b³

Solution:

= (5a)³ - (2b)³
= (5a - 2b)[(5a)² + (5a)(2b) + (2b)²]
= (5a - 2b)(25a² + 10ab + 4b²)

Frequently Asked Questions (FAQs)

Q1: What is the formula for x³ + y³?

Answer: The formula for x³ + y³ is:

x³ + y³ = (x + y)(x² - xy + y²)

This is the sum of cubes formula, where the expression is factorized into two factors: a linear factor (x + y) and a quadratic factor (x² – xy + y²).

Q2: What is the factorization of a³ – b³?

Answer: The factorization of a³ – b³ is:

a³ - b³ = (a - b)(a² + ab + b²)

This is known as the difference of cubes formula. The first factor is (a – b) and the second factor is a quadratic expression (a² + ab + b²) which cannot be factored further over real numbers.

Q3: How do you factor a³ + b³?

Answer: To factor a³ + b³, follow these steps:

Step 1: Identify the cube roots of each term (a and b)

Step 2: Apply the sum of cubes formula:

a³ + b³ = (a + b)(a² - ab + b²)

Step 3: The first factor is the sum of the cube roots: (a + b)

Step 4: The second factor is: (square of first term) – (product of both terms) + (square of second term)

Example: Factor 8x³ + 27

  • Cube roots: 2x and 3
  • Formula: (2x + 3)[(2x)² – (2x)(3) + 3²]
  • Answer: (2x + 3)(4x² – 6x + 9)

Q4: x³ + y³ का सूत्र क्या है? (What is the formula for x³ + y³ in Hindi?)

उत्तर (Answer): x³ + y³ का सूत्र है:

x³ + y³ = (x + y)(x² - xy + y²)

यह घनों के योग का सूत्र है। इसमें व्यंजक को दो गुणनखंडों में विभाजित किया जाता है: एक रैखिक गुणनखंड (x + y) और एक द्विघात गुणनखंड (x² – xy + y²)।

व्याख्या: जब दो पदों के घनों का योग होता है, तो उसे इस सूत्र की सहायता से गुणनखंड किया जा सकता है।

Q5: a³ – b³ का गुणनखंड क्या है? (What is the factorization of a³ – b³ in Hindi?)

उत्तर (Answer): a³ – b³ का गुणनखंड है:

a³ - b³ = (a - b)(a² + ab + b²)

यह घनों के अंतर का सूत्र है।

विवरण:

  • पहला गुणनखंड: (a – b) – यह रैखिक व्यंजक है
  • दूसरा गुणनखंड: (a² + ab + b²) – यह द्विघात व्यंजक है जिसे और अधिक गुणनखंड नहीं किया जा सकता

उदाहरण: 64x³ – 27 को गुणनखंड करें

= (4x)³ - 3³
= (4x - 3)[(4x)² + (4x)(3) + 3²]
= (4x - 3)(16x² + 12x + 9)

Important Tips for Students

  1. Remember the sign pattern: In a³ + b³, the middle term in the second factor is negative (-ab), while in a³ – b³, it’s positive (+ab)
  2. First factor is simple: The first factor always mirrors the operation between a³ and b³
  3. Second factor never changes sign of outer terms: In both formulas, a² and b² are always positive
  4. Verify your answer: Always expand your factored form to check if you get back the original expression
  5. Common mistakes to avoid:
    • Confusing the signs in the quadratic factor
    • Forgetting to identify perfect cubes correctly
    • Not simplifying coefficients when dealing with numerical cubes

 

Leave a Comment

Your email address will not be published. Required fields are marked *

Book your Free Counseling Session

Our knowledgeable academic counsellors take the time to clearly explain every detail and answer all your questions.

Scroll to Top

Book a Counseling Session