

JEE MAIN-2026

Test Date: 23rd Jan 2026 (Second Shift)

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

IMPORTANT INSTRUCTIONS

- The test is of **3 hours** duration.
- This test paper consists of 75 questions. Each subject (PCM) has 25 questions. The maximum marks are 300.
- This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
- Section - A: Attempt all questions.
- Section - B: Attempt all questions.
- Section - A (01–20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer. Section - B (21–25) contains 5 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

Memory Based Questions

PHYSICS

1. When an unpolarized light falls at a particular angle on a glass plate (placed in air). It is observed that reflected beam is completely polarized the angle of refracted beam with respect to the normal is _____
 $\tan^{-1}(1.52) = 57.3^\circ$; (Refractive index of air and glass 1.00 and 1.52)

Ans: (32.3°)

Ans: (2)

3. A metallic sphere of diameter 2 mm and density 10.5 g/cm^3 is dropped in glycerine having viscosity 10 poise and density 1.5 g/cm^3 . The terminal velocity attained by the sphere is _____ cm/s

$$\pi = \frac{22}{7}, g = 10 \text{m/s}^2$$

Ans: (1)

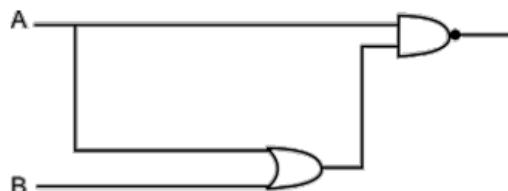
4. A prism of angle 75° and refractive index $\sqrt{3}$ is coated with thin film of refractive index 1.5 only at the back exit surface. To get total internal reflection (TIR) at the back exit surface, the incident angle must be ($\sin 15^\circ = 0.25, \sin 25^\circ = 0.43$)

(1) $\angle 15^\circ$ (2) 15° (3) $> 25^\circ$ (4) Between 15° and 20°

Ans: (3)

5. Find the magnetic field at the centroid of an equilateral triangle of side length $4\sqrt{3}$ m and a current of 2 A is flowing through it.

Ans: $(3\sqrt{3} \times 10^{-7} \text{ T})$


6. A sky trooper jumps from an airplane and opens his parachute after 2 s and deaccelerates with 3 m/s^2 . When he reaches height of 10 m from ground his speed becomes 8 m/s, find the initial height of airplane.

Ans: (86 m)

7. A body of mass $m \text{ kg}$ initially at rest explodes and breaks into three fragments of masses in the ratio 2:2:3. The two pieces of equal masses fly perpendicular to each other with 1 m/s speed each. The velocity of heavier fragment is _____ m/s.

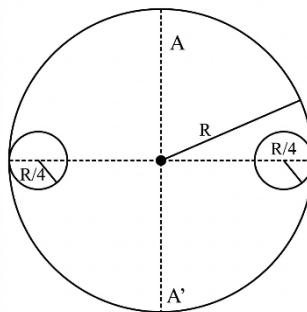
Ans: $\left(\frac{2\sqrt{2}}{3} \right)$

8. Provide the correct truth table _____

Ans: $\begin{pmatrix} A & B & C \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$

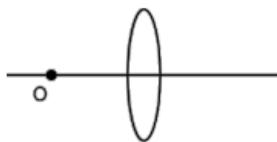
9. One mole of an ideal diatomic gas expands from volume V to $2V$ isothermally at temp 27°C , and does $W \text{ J}$ of work. If the gas undergoes expansion adiabatically from 27°C doing the same amount of work, then find the final temp.

Ans: (-56°C)


10. A circular loop of radius 7 cm is placed in uniform Magnetic field of 0.2 T directed perpendicular to plane of loop. The loop is converted into a square in 0.5 s, the induced emf in the loop is _____ mV

Ans: (1.32)

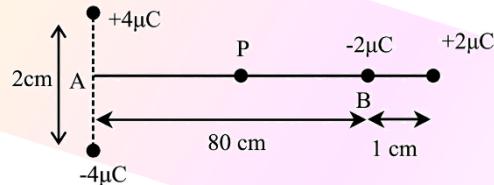
11. A point charge $7\mu\text{C}$ is placed at $(-9, 0, 0)$. Another point charge $-2\mu\text{C}$ is placed at $(9, 0, 0)$. Find potential energy of system.


Ans: (7 mJ)

12. The shaded region is removed from the disc of radius R . Then MOI of remaining disc?

Ans: $\left(\frac{109}{256} MR^2 \right)$

13. When an object is kept at a distance of 8 cm and 24 cm from a convex lens magnitude of magnification is same in both cases. Find Focal length.


(1) 24 cm (2) 32 cm (3) 8 cm (4) 16 cm

Ans: (4)

14. Work functions of 2 metals A, B are in the ratio of 1:2. Kinetic energies of metals are in ratio 2.624:1. A Photon of energy of 6 eV is incident on the metals. Then the work function values of metal A and B are

Ans: ($\phi_A \approx 2.3$ eV, $\phi_B \approx 4.6$ eV)

15. Four charges are kept as shown in the figure. Find magnitude of electric field at point P. P is midpoint of line AB.

Ans: $\left(\frac{45\sqrt{5}}{8} \times 10^3 \text{ V/m} \right)$

CHEMISTRY

1. Identify the correct set of details from the following:

- A) $[\text{Co}(\text{NH}_3)_6]^{3+}$: Inner orbital complex:- d^2sp^3 hybridized
- B) $[\text{MnCl}_6]^{3-}$: Outer orbital complex:- sp^3d^2 hybridized
- C) $[\text{CoF}_6]^{3-}$: Outer orbital complex:- sp^3d^2 hybridized
- D) $[\text{FeF}_6]^{3-}$: Outer orbital complex:- sp^3d^2 hybridized
- E) $[\text{Ni}(\text{CN})_4]^{2-}$: Inner orbital complex:- dsp^2 hybridized

Choose the correct answer from the option given below:

- (1) C, D only
- (2) A, B, & D only
- (3) A, B, C, D, E
- (4) A, C & E only

Ans: (2)

2. The oxidation state of chromium in the final product in the reaction between KI and acidified $\text{K}_2\text{Cr}_2\text{O}_7$ solution is

- (1) +2
- (2) +6
- (3) +4
- (4) +3

Ans: (4)

3. Both human DNA and RNA are Chiral molecules. Chirality in DNA and RNA arise due to the presence of

- (1) Chiral Phosphate unit
- (2) D-sugar component
- (3) sugar component
- (4) Base unit

Ans: (2)

4. In Carius method 0.2425 g of organic compound gave 0.5253 g silver chloride. The percentage of chloride in the organic compound

- (1) 37.57%
- (2) 87.65%
- (3) 34.79%
- (4) 53.58%

Ans: (4)

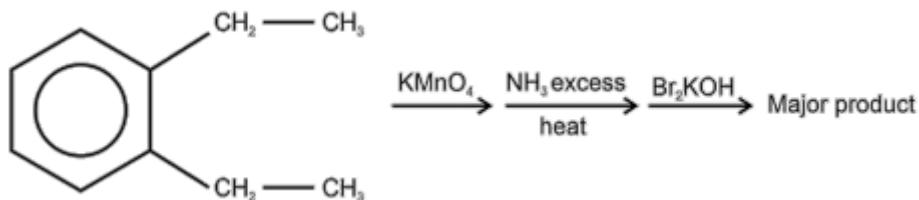
5. Iodoform test can differentiate

- (1) Anisole & Acetone
- (2) CH_3 & $\text{CH}_3 - \text{CH}_2 - \text{COOH}$
- (3) cyclopropene & cyclobutene
- (4) Phenol & Benzoic Acid

Ans: (1)

11. Given below are two statements.

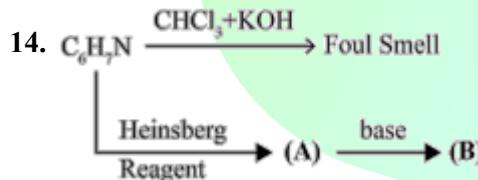
Statement I: Size of O^{2-} is smaller than F^-


Statement II: Electronegativity of F is more than that of oxygen.

In the light of the above statements, which is the correct option.

- (1) Both statement-I and statement-II are correct
- (2) Both statement-I and statement-II are incorrect
- (3) Statement-I is correct and statement-II is incorrect
- (4) Statement-I is incorrect and statement-II is correct

Ans: (4)


12. The major product in the following sequence of reactions:

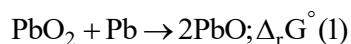
Ans: o-Phenylenediamine or Benzene-1, 2 -diamine (Option dependent)

13. An ideal solution is formed by mixing 3 mole of A and 1 mole of B and the vapour pressure of solution is found to be 500 mm Hg. After further addition of 1 mole A, pressure of solution becomes 520 mm Hg. Find P_A° .

Ans: (600 mm Hg)

Number of hydrogen atoms in B.

Ans: (10)


15. For XeO_2F_2 , select the correct statement(s).

- (A) It shows a see-saw shape.
- (B) Number of lone pair(s) of electron on Xe is 1.
- (C) $\angle \text{FXeF} = 180^\circ$ (approx.)
- (D) It has a tetrahedral shape.

- (1) (A), (C), (D) Only
- (2) (A), (B) only
- (3) (A), (B), (C) only
- (4) (B), (C), (D) only

Ans: (3)

16. It is noted that Pb^{2+} is more stable than Pb^{4+} but Sn^{2+} is less stable than Sn^{4+} in the following reactions:

- (1) $\Delta_r G^\circ (1) > 0, \Delta_r G^\circ (2) < 0$
- (2) $\Delta_r G^\circ (1) > 0, \Delta_r G^\circ (2) > 0$
- (3) $\Delta_r G^\circ (1) < 0, \Delta_r G^\circ (2) < 0$
- (4) $\Delta_r G^\circ (1) < 0, \Delta_r G^\circ (2) > 0$

Ans: (4)

17. If $\text{K}_2\text{Cr}_2\text{O}_7(200 \text{ cm}^3, x \times 10^{-3} \text{ M})$ react with $0.6 \text{ M}, 750 \text{ cm}^3$ Mohr's salt, then the value of x is:

Ans: (375)

MATHEMATICS

1. If $A = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ and $B(I-A) = I+A$ then $B = ?$

$$\text{Ans: } B = \frac{1}{3} \begin{bmatrix} -3 & 2 & 2 \\ -6 & 5 & -10 \\ -6 & 6 & -9 \end{bmatrix}$$

2. The sum of all the real solutions of equation

$$\log_{(x+3)}(6x^2 + 28x + 30) = 5 - 2\log_{(6x+10)}(x^2 + 6x + 9) \text{ is:}$$

Ans: (4)

3. The number of ways in which 16 identical oranges can be distributed to four children such that each child gets at least one orange, is

Ans: (1)

4. If the points of intersection of the ellipses $x^2 + 2y^2 - 6x - 12y + 23 = 0$ and $4x^2 + 2y^2 - 20x - 12y + 35 = 0$ lie on a circle of radius r and centre (a, b) then the value of $ab + 18r^2$ is

Ans: (3)

5. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{c})$. If $|\vec{a}|=1$, $|\vec{b}|=4$, $|\vec{c}|=2$ and the angle between \vec{b} and \vec{c} is 60° , then $|\vec{a} \cdot \vec{c}|$ is equal to

Ans: (1)

6. The area of the region enclosed between the circle $x^2 + y^2 = 4$ and $x^2 + (y-2)^2 = 4$ is

(1) $\frac{4}{3}(2\pi - 3\sqrt{3})$ (2) $\frac{2}{3}(2\pi - 3\sqrt{3})$ (3) $\frac{4}{3}(2\pi - \sqrt{3})$ (4) $\frac{2}{3}(4\pi - 3\sqrt{3})$

Ans: (4)

7. An equilateral triangle OAB is inscribed in the parabola $y^2 = 4x$ with the vertex 'O' at the vertex of the parabola. Then the minimum distance of the circle having AB as a diameter from the origin is.

(1) $2(3+\sqrt{3})$ (2) $4(6+\sqrt{3})$ (3) $4(3-\sqrt{3})$ (4) $2(8-3\sqrt{3})$

Ans: (3)

Ans: (1)

9. If the mean and the variance of the data in the following table are 14 and 19 respectively, then the value of $\lambda + \mu$ is

Class	4-8	8-12	12-16	16-20
Frequency	3	λ	4	7

Ans: (3)

10. The system of linear equations $x + y + z = 6$, $2x + 5y + az = 36$, $x + 2y + 3z = b$ has

- (1) infinitely many solutions for $a = 8, b = 16$
- (2) unique solutions for $a = 8, b = 16$
- (3) unique solutions for $a = 8, b = 14$
- (4) infinitely many solutions for $a = 8, b = 14$

Ans: (4)

11. If $i = \sqrt{-1}$ and $Z = \frac{\sqrt{3}}{2} + \frac{i}{2}$, then $(Z^{201} - i)^8$ is equal to

Ans: (256)

12. If $I(x) = \int \frac{3dx}{(4x+6)(\sqrt{4x^2+8x+3})}$ where $I(0) = \frac{\sqrt{3}}{4} + 20$ and $I\left(\frac{1}{2}\right) = \frac{a\sqrt{2}}{b} + c$, for $a, b, c \in \mathbb{N}$, $\gcd(a, b) = 1$,
 $a + b + c$ is equal to

Ans: (31)

Ans: (4)

14. Let $\sum_{k=1}^n a_k = \alpha n^2 + \beta n$ and $a_{10} = 59$ and $a_6 = 7a_1$, then find $\alpha + \beta =$

Ans: (5)

15. If $f(x) = \begin{cases} a|x| + x^2 - 2(\sin|x|)(\cos|x|), & x \neq 0 \\ \frac{x}{b}, & x = 0 \end{cases}$, is continuous at $x = 0$, then $a + b$ is equal to

Ans: (4)

Ans: (3)

Ans: (3)